tives even though the total data have not been measured. A judgment of s^2 could be made from those data used to solve the structure and an estimate of the confidence region could then also be made.

All this might not suffice, however, to give the individual investigator the confidence needed to abandon the work even if there is strong indication that a refined structure is not feasible.

The cases which are not extreme are those in which there may be apparent convergence but some large correlations and error estimates. The calculation of confidence regions should be worthwhile in such cases, although with a *large* number of correlated parameters, it is doubtful that it will be extremely useful. It is especially important however to note by examination of the correlation matrix which of the parameters appear to be correlated and which of them do not.

The author wishes to thank Dr W. C. Hamilton for his interest and constructive criticism, Dr C. L. Mallows for several enlightening discussions on mathematical statistics, Dr H. T. Evans, Jr. for permission to use the data and quote some of the results given in his report on BaTiO₃, Dr B. C. Frazer for discussions of the neutron diffraction investigation (Danner, Frazer & Pepinsky, 1960) of the BaTiO₃ structure, and Misses D. C. Leagus and B. B. Cetlin for writing the program patches for the Busing-Levy Program.

Several books and a paper by Box & Coutie (1956) were useful in this work. The books are: Acton (1959), Anderson (1958), Scheffé (1959) and Wilks (1946).

References

Abrahams, S. C. & Geller, S. (1958). Acta Cryst. 11, 437.

- ACTON, F. S. (1959). Analysis of Straight-Line Data. New York: Wiley.
- ANDERSON, T. W. (1958). An Introduction to Multivariate Statistical Analysis. New York: Wiley.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- Box, G. E. P. & COUTTE, G. A. (1956). Proc. Inst. Elec. Engrs. (London), 103, Part B Suppl., 100.
- BUSING, W. R. & LEVY, H. A. (1959). ORNL Central Files Memorandum 59-4-37, April.
- CRUICKSHANK, D. W. J. (1959). International Tables for X-ray Crystallography, Vol. II, Section 6, p. 326. Birmingham, England: The Kynoch Press.
- DANNER, H. R., FRAZER, B. C. & PEPINSKY, R. (1960). Acta Cryst. 13, 1089.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- DULMAGE, W. J. & LIPSCOMB, W. N. (1951). Acta Cryst. 4, 330.
- EVANS, H. T., Jr. (1952). Philips Laboratories, Inc. Research Laboratory, Technical Report No. 54.
- Geller, S. & Booth, D. P. (1959). Z. Kristallogr. 111, 117.
- GELLER, S. & DURAND, J. L. (1960). Acta Cryst. 13, 325.
- GELLER, S. & GILLEO, M. A. (1959). J. Phys. Chem. Solids, 9, 235.
- GELLER, S. & KATZ, H. (1962). (To be published.)
- Нонп, F. E. (1958). Elementary Matrix Algebra. New York: Macmillan.
- JAMES, R. W. & BRINDLEY, G. W. (1931). Z. Kristallogr. 78, 470.
- Scheffé, H. (1959). Analysis of Variance. New York: Wiley.

TEMPLETON, D. H. (1955). Acta Cryst. 8, 842.

- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WILKS, S. S. (1946). *Mathematical Statistics*. Princeton, New Jersey: Princeton University Press.

Acta Cryst. (1961). 14, 1035

Potassium Osmyl Chloride — Refinement of the Crystal Structure*

By F. H. Kruse

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

(Received 12 October 1960)

The crystal structure of $K_2OsO_2Cl_4$, first reported by Hoard & Grenko (1934), has been refined by least-squares and Fourier calculations using three dimensional data. The crystals are tetragonal, I4/mmm, with $a_0 = 6.991 \pm 0.004$ and $c_0 = 8.752 \pm 0.006$ Å. The two primary bond lengths in the $OsO_2Cl_4^{--}$ ion were refined to: Os-O: 1.750 ± 0.022 Å and Os-Cl: 2.379 ± 0.005 Å.

Introduction

The crystal structure of potassium osmyl chloride, $K_2OsO_2Cl_4$, was first determined by Hoard & Grenko

(1934) (referred as H.&G. in remaining text). At that time the unit cell dimensions, space group and approximate values for the variable parameters of oxygen and chlorine were established, as well as the location of the osmium and potassium atoms in special positions. In conjunction with an extensive study of the

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

vibrational spectra of complexes containing linear inorganic oxygen-metal-oxygen groups (Jones, 1958, 1959) an accurate measure of the oxygen-osmium bond length was needed and thus the refinement of this structure was undertaken.

The uranyl ion, UO_2^{++} , is the best known member of this type of inorganic linear O-M-O group. A number of other actinides, neptunium, plutonium and americium, are known to form such linear arrangements. Osmium, ruthenium and rhenium are the few non-actinide elements which form these complexes. They probably never exist as free triatomic ions but are always coordinated with from two to six ligands. The type of ligand coordinated to the central metal atom has a very strong influence on the metal to oxygen bond length. For example, in various uranyl complexes the metal to oxygen bond length ranges from 1.65 to 1.95 Å (Zachariasen & Plettinger, 1959; Zachariasen, 1954).

Experimental

Potassium osmyl chloride was prepared from potassium osmate, $K_2OSO_2(OH)_4$, by treatment with dilute HCl as described by Wintrebert (1903). Small tetragonal bipyramids were obtained on recrystallization from dilute hydrochloric acid solution. The compound has been described as unstable in air, but the dry, recrystallized material was found to be stable in the relatively dry New Mexico atmosphere.

A Cu $K\alpha$ ($\lambda = 1.5418$ Å) powder photograph gave unit cell dimensions in agreement with those published by H.&G., that is:

	Hoard & Grenko	This work
a_0	6.99	6.991 ± 0.004 Å
c_0	8.75	8.752 ± 0.006 A
Z = 2	Obs. density 3.4 g.cm. ⁻³	Calc. density 3.42 g.cm. ⁻³

Optically, K₂OsO₂Cl₄ crystals are uniaxial negative with $\eta_0 = 1.757 \pm 0.005$ and $\eta_e = 1.665 \pm 0.005$ (5893 Å). The normally dark red-amber crystals are dichroic in thin sections displaying a pale amber color in the ε direction and darker red-amber color in the *o* direction.

As shown by H.&G. the diffraction symmetry is characteristic of the following tetragonal body-centered space groups: I422, I4mm, $I\bar{4}m2$, $I\bar{4}2m$, and I4/mmm. Of these five the only centrosymmetric group is I4/mmm. Stereochemical considerations of packing for the OsO₂Cl₄-- ion by H.&G. indicated I4/mmm to be the most likely group and subsequently there has been found no evidence of non-centrosymmetry in this structure.

The diffraction data were collected using Mo $K\alpha$ radiation and a scintillation counter detector mounted on a Weissenberg camera (Evans, 1953). An approximately octahedral specimen was mounted and then rounded to a sphere of 0.03 mm. radius by solvent attrition (methanol-HCl-water solution). The crystal was slightly elongated about the rotation axis. Essentially all the data detectable by the scintillation counter were recorded, yielding 340 independent reflections from more than 2000 observations of the eight zones 0kl to 7kl. The intensity data were corrected for background, for the usual Lorentz-polarization effects, and for absorption assuming a spherical specimen with μ of 190 cm.⁻¹ and thus a μr of 0.6. Absorption factor tables of Evans & Ekstein (1952) were used. From a plot of ratios of related intensities from the various layers, an empirical cylindrical-type upper layer absorption correction curve was obtained and this additional correction was applied to the seven upper layers. All symmetry-related reflections from the various layers showed internal consistency and were averaged in the final compilation of the 340 unique reflections.

Refinement of the parameters

The position parameters for all four atoms in the space group, I4/mmm, were established by H.&G. to be:

 $\begin{array}{ll} (0,\,0,\,0;\,\frac{1}{2},\,\frac{1}{2},\,\frac{1}{2})\,+\\ \mathrm{Os}\,\,(a)\,\,0,\,0,\,0;\\ \mathrm{K}\,\,(d)\,\,0,\,\frac{1}{2},\,\frac{1}{4};\,\frac{1}{2},\,0,\,\frac{1}{4};\\ \mathrm{O}\,\,(e)\,\,0,\,0,\,z;\,\,0,\,0,\,\bar{z};\\ \mathrm{Cl}\,\,(h)\,\,x,\,x,\,0;\,\bar{x},\,\bar{x},\,0;\,\,x,\,\bar{x},\,0;\,\,\bar{x},\,x,\,0;\,\,x=0{\cdot}230. \end{array}$

With these initial values a least-squares refinement was carried out with isotropic individual atom temperature factors using the 340 observed reflections, not weighted. All computations were carried out on an IBM 704. The refinement led to

 $z_0 = 0.199$, $x_{C1} = 0.230$ and R = 0.0765.

The standard deviation of the Os–O bond length was ± 0.03 Å. Only one reflection, (022), had a negative calculated structure factor.

A three-dimensional F_o Fourier synthesis (Fig. 1) was calculated and several unidentified peaks were found of nearly the same magnitude as the oxygen peak. However, the calculation of a difference Fourier wherein the osmium and potassium contributions were removed showed the three peaks (of approximately 10 e.Å⁻³) to be due to heavy-atom effects. The difference map (Fig. 1) also indicated anisotropic thermal parameters for K⁺.

At this point in the refinement the least-squares routine was improved to include anisotropic temperature factors of the form:

$$\exp - (B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl + B_{23}kl)$$

The special positions of the atoms Os, K and O require the cross terms to be zero and $B_{11} = B_{22}$ while for Cl $B_{13} = B_{23} = O$ and $B_{11} = B_{22}$. The least-squares refinement program uses the full matrix solution of the normal equations and full inverse of the matrix

Fig. 1. Electron density functions, sections at x=0, (a) F_o Fourier section and (b) $[F_o - F_c$ (Os and K⁺)] difference Fourier section. The zero contour is dotted and the contour scale is approximately 5 e.Å⁻³. Os at (0, 0), K⁺ at $(\frac{1}{2}, \frac{1}{4})$, and O at (0, 0.2).

 Table 1. Parameters of O and Cl, R, Wtd. R and ESD of unit-wt. observation as determined by least-squares refinement

 ESD of unit-wt

	$x_{ m Cl}$	z_{0}	R	Wtd. R	observation
Anisotropic temp. factors	0.2406 ± 0.0005	0.1999 ± 0.0022	0.0579	0.0442	2.940
Isotropic temp. factors	0.2409 ± 0.0007	0.2013 ± 0.0023	0.0785	0.0550	3.662

in solving for the standard deviations. With only twelve variables less than three minutes was required for each cycle for 340 reflections.

Before calculating with anisotropic thermal factors, the $F_{o^2}(hkl)$ data were assigned weights based on counting-rate errors. The scattering factor curve for osmium was improved by replacing the Thomas–Fermi factor with the more recent Thomas–Umeda (1957)

Table 2. Anisotropic temperature factors

A. Final thermal parameters $\times 10^4$ after the anisotropic least-squares refinement

	B_{11}	B_{12}	B_{33}
Os	76 ± 2	(00)	52 ± 2
K^+	274 ± 12	(00)	77 ± 9
0	117 ± 23	(00)	136 ± 34
C1	137 + 11	-46 + 27	171 + 8

B. B_i (Å²) and root-mean-square amplitudes in Å along ellipsoid axes

	Crystal axis		Root-mean-
	direction of		square
	ellipsoid axis	B_{i}	amplitude
Os	X	1.49	0.14
	Z	1.58	0.14
K^+	X	5.36	0.26
	Z	2.34	0.12
0	X	2.29	0.12
	Z	4 ·16	0.23
Cl	X, X	3.12	0.50
	X, \overline{X}	$2 \cdot 22$	0.12
	Z	5.24	0.26

scattering factor curve. In a few cycles the refinement settled on the parameters shown in Table 1. A complete $(F_o - F_c)$ Fourier synthesis was then computed and all spurious peaks above 1 e.Å⁻³ had been removed by application of anisotropic temperature factors. In all of these calculations only the observed reflections were employed with no special provision for the unobserved ones. With the final parameters a structure factor calculation was computed for all reflections allowed by the space group within the Mo sphere. No calculated structure factor for an accessible unobserved reflection exceeded the minimum value for that region of the sphere. The F_o, F_c data are presented in Table 3.

The anisotropic B's (in Å²) and root-mean-square amplitudes are given in Table 2. The direction cosines of the ellipsoid axes are prescribed by symmetry of the special positions in the space group I4/mmm. The values in Table 2 were computed with an IBM 704 program by Larson (1960).

While a least-squares cycle of refinement was being computed, the following factors were also calculated and then printed at the end of the cycle.

$$\begin{split} R &= \Sigma ||F_o| - |F_c||/\Sigma |F_o| .\\ \text{Wtd. } R &= \{ \Sigma w (|F_o| - |F_c|)^2 / \Sigma w F_o^2 \}^{\frac{1}{2}}.\\ \text{EDS of unit-wt. observation} \\ &= \{ \Sigma w (|F_o| - |F_c|)^2 / (m-n) \}^{\frac{1}{2}}. \end{split}$$

Table 3. Final observed and calculated structure factors for $\rm K_2OsO_2Cl_4$

<i>b 1</i> ,1	F	F	h h h h	F	F	h 1.1	107	707	1 1.1.1	107	177
1000	10	- C	1000	10	r c	10.00	1 0	r c	1000	r _o	r _c
002	169	167	0,10,4	22	24	1,11,0	23	26	3,3,12	23	22
004	226	229	0.10.6	23	19	1.11.2	23	24	3.3.14	25	22
006	108	98	0.10.8	23	18	1 11 4	22	22	341	76	70
000	100	109	0,10,0	20	96	1116	- <u>-</u>	91 91	949	64	19
008	102	103	0,12,0	30	20	1,11,0	23	21	343	04	64
0,0,10	50	47	0,12,2	28	22	1,12,3	23	18	345	67	67
0,0,12	44	46	0,12,4	22	22	220	261	268	347	50	48
0.0.14	22	19	0.12.6	24	18	222	131	133	349	41	40
0.0.16	22	10	119	166	165	224	170	191	2411	21	10
0,0,10	110	110	114	70	70	224	110	101	0,4,11	01	30
015	112	110	114	10	12	220	80	89	3,4,13	21	21
015	115	112	116	115	115	228	86	89	350	62	66
017	74	72	118	40	42	2,2,10	41	43	352	87	77
019	56	57	1,1,10	61	62	2,2,12	36	41	354	52	53
0.1.11	40	41	1.1.12	22	24	231	117	122	356	63	62
0113	25	97	1 1 14	28	98	022	05	05	250	90	00
0,1,15	50	10	1,1,11	107	100	200	01	04	000	34	34
0,1,15	44	19	121	127	128	235	91	94	3,5,10	36	38
020	115	106	123	92	93	237	60	64	361	66	70
022	49	- 31	125	97	98	239	47	51	363	60	60
024	91	86	127	64	65	2.3.11	33	36	365	55	58
026	30	25	129	52	53	2 3 13	20	24	367	41	49
020	58	59	1911	24	20	0.9.15	20	17	907	41	42
020	00	00	1,2,11	04	39	2,3,15	20	17	369	32	34
0,2,10	29	27	1,2,13	24	26	240	70	73	3,6,11	25	25
0,2,12	33	36	1,2,15	· 20	18	242	18	8	3,6,13	25	17
031	107	106	130	93	93	244	63	61	370	44	54
033	86	80	132	128	128	246	28	27	379	59	56
035	86	87	134	66	67	949	45		974	52	00
000	50	51	104	00	07	240	40	44	374	39	44
037	98	59	130	90	97	2,4,10	ZZ	25	376	42	46
039	48	49	138	33	40	2,4,12	29	28	378	26	28
0,3,11	31	36	1,3,10	53	54	251	66	69	3,7,10	28	28
0,3,13	27	25	1,3,14	29	25	253	57	56	381	40	42
0.3.15	23	17	141	103	104	255	61	60	383	26	96
040	208	204	143	84	83	250	44	44	905	00	30
040	119	110	145	0.	00	201	90	11	300	30	37
042	113	113	140	82	84	259	39	38	387	28	28
044	151	148	147	57	58	2,5,11	28	28	389	26	24
046	79	80	149	44	47	260	111	121	3,8,11	22	18
048	76	77	1.4.11	32	34	262	81	83	3 8 13	24	19
0410	39	40	1 4 13	94	22	264	Q.4	04	200	41	10
0,1,10	94	90	1,1,10	70	20	204	57	3 4	390	41	35
0,4,12	34	30	150	70	10	260	57	60	392	36	34
0,4,14	21	18	152	90	92	268	53	53	394	30	30
051	102	102	154	54	59	2,6,10	29	32	396	33	29
053	86	83	156	71	73	2.6.12	25	26	398	25	20
055	89	80	158	22	37	2,0,12	63	70	2010	20	20
057	57	50	1 5 10	41	49	271	61	70	3,9,10	25	19
057	57	50	1,5,10	41	43	273	61	59	3,10,1	34	31
059	44	45	161	67	70	275	51	56	3,10,3	30	28
0,5,11	30	32	163	57	59	277	41	41	3,10,5	28	27
0,5,13	22	22	165	55	59	279	30	33	440	148	142
060	62	56	167	43	43	2711	22	94	119	07	0.0
064	47	48	160	24	26	2,1,11	21	21	444	114	90
004	40	40	109	04	30	200	31	30	444	114	110
000	40	28	1,0,11	25	27	282	18	20	446	67	67
068	38	36	170	49	56	284	30	32	448	68	60
0,6,10	22	24	172	56	60	286	21	24	4,4,10	30	35
071	49	49	174	43	46	288	25	25	4.4.12	31	29
073	41	42	176	48	50	291	28	31	451	80	70
075	39	45	178	27	30	202	20	97	459	70	19
077	26	94	1 7 10	21	00	290	20	21	403	70	67
077	30	34	1,7,10	24	31	295	26	29	455	63	64
079	29	29	181	46	51	297	22	23	457	48	46
0,7,11	18	23	183	43	44	2,10,0	46	44	459	38	37
0.7.13	19	16	185	42	43	2 10 2	41	36	4511	20	07
080	82	79	187	35	22	2,10,2	20	27	4 5 19	20	21
000	64	50	107	00 91	00	2,10,4	30	31	4,0,13	20	18
082	04	59	109	31	21	2,10,6	28	28	460	38	41
084	66	03	1,8,11	29	20	2,10,8	26	23	462	21	19
086	42	44	1,8,13	36	14	2,11,1	32	30	464	37	37
088	42	37	190	36	4 0	2.11.3	30	26	466	24	25
0,8.10	26	25	192	38	40	2.11.5	28	25	468	20	50
091	50	49	104	24	24	9 11 7	- <u>-</u> 0	10	4,610	04 00	29 51
002	10		104	04 00	0± 99	4,11,1	20	19	4,0,10	22	21
093	40	40	190	29	3 3	330	105	85	471	36	40
095	39	40	198	29	23	332	107	109	473	34	35
097	34	30	1,9,10	22	21	334	57	65	475	33	37
099	24	24	1,10,1	28	32	336	90	84	477	27	28
0.10.0	29	27	1.10.3	28	28	338	33	30	470	95	20 9#
.110			1 10 5	20	28	2910	10	10	4 7 11	20	20
			1 1,10,0	04	20	1 0,0,10	40	40	1 4 ,7,11	20	19

Table 3 (cont.)

hkl	F_{o}	F_c	hkl	F_o	F_c	
480	66	64	561	44	45	
482	54	50	563	38	39	
484	55	52	565	38	40	
486	38	38	567	29	31	
488	31	31	569	25	26	
491	41	41	570	39	41	
493	4 0	36	572	44	41	
495	32	34	574	34	35	
497	27	25	576	35	35	
499	21	20	578	22	23	
550	65	59	5,7,10	22	23	
552	64	64	581	42	42	
554	44	48	583	18	36	
556	51	52	585	35	35	
558	29	31	587	22	26	
5, 5, 10	25	31				

Sum delta squared = $\Sigma(\Delta)^2 = \Sigma(|F_o| - |F_c|)^2$. Sum wtd. delta squared

$$= \Sigma \text{ wtd. } (\varDelta)^2 = \Sigma w(|F_o| - |F_c|)^2.$$

Sum delta
$$= \Sigma \varDelta = \Sigma ||F_o| - |F_c||.$$

Estimated standard deviation of unit-wt. observation, known also as the error-of-fit function, has unity as the ideal value. Deviation from unity has been ascribed variously to an incorrect model, to structural parameters not properly optimized, or to a weighting scheme which does not reflect the true errors of the observation. For any given model of the structure where the standard deviations of the $I_0(hkl)$ data are used to determine the least-squares weighting it is possible to 'scale' those standard deviations by a constant factor and thus cause the ESD of unit-wt. observations to approach unity. This may not be a legitimate use of this function but it does indicate the standard deviations in the data which are considered compatible with the model and the data set being refined. However, no ESD of unit-wt. observation given in this paper was so scaled.

The bulk of the least-squares refinements were carried out using the following atomic scattering factor curves:

> f_{Os0} — Thomas & Umeda (1957). f_{O0} — Berghuis *et al.* (1955). f_{C1} — Freeman (1959). f_{K} — Freeman (1959).

Computation of a few least-squares refinement cycles was carried out employing combinations of f curves for O⁻, O⁻⁻, and Cl⁰. None of the results fell outside the standard deviations obtained with the f curves mentioned above.

Weighting

The weight, w, used in the least-squares refinements was determined from standard deviations by the relation $1/\sigma$.

{	hkl	F_o	F_c	hkl	F_o	F_c
ł	590	28	33	680	18	24
ł	592	27	31	684	20	22
ł	594	19	28	6,10,0	28	30
l	596	20	26	6,10,2	26	26
ļ	660	75	72	6,10,4	22	25
	662	57	56	6,10,6	21	20
	664	58	59	770	35	36
	666	43	42	772	33	35
	668	33	34	774	26	30
	6,6,10	19	23	776	26	28
	671	46	46	781	27	24
	673	41	40	783	23	22
	675	36	38	785	23	22
	677	27	28	787	23	18
	679	23	23	790	26	22
Í						

The statistical counting-rate error as described by Friedlander & Kennedy (1955) was assigned as follows:

Background count	$= C_b = N_b \pm \sqrt{N_b}.$
Total count	$= C_t = N_t \pm \gamma N_t.$
Net count	$= C_t - C_{bkgd} = C_{net} \pm (N_b + N_t)^{\frac{1}{2}}.$

The count for each piece of data was a 'fixed time' count of 1.2 minutes. This equation for net count does not explicitly include effects due to absorption, extinction or any other experimental errors but tends to merge them as a single effect. The standard deviation was assigned to the I_0 of each reflection and was properly scaled to give σ_{Fo} for each unique reflection employed in the least-squares refinements.

The factor of $1/\sqrt{n}$ was not employed for standard deviations of symmetry-related reflections observed n times because these observations were averaged to minimize absorption errors in the assumption of a spherical specimen.

Least-squares calculations also were carried out with unit weighting of the F_o and F_o^2 in order to compare the results of this approach with that of statistical counting-error weighting. Use of unit weight for F_o implies that every intensity was collected with a standard deviation such that the corrected and scaled F_o has a $\sigma_{F_o} = 1.00$. Experimental standard deviations are usually determined from measurements of I_0 from which one obtains F_{o^2} and $\sigma_{F_o^2}$. In calculating the corresponding F_o and σ_{F_o} one uses the relation: $\sigma_{F_o} = \sigma_{F_o}^2/(2F_o^2)^{\frac{1}{2}}$. Consequently if one assigns unity to all σ_{F_o} , this means one is assuming $\sigma_{F_o^2} = (2F_o^2)^{\frac{1}{2}}$ or the standard deviation of a measured intensity has been assigned as proportional to the square root of the magnitude of the intensity. The converse relation holds true if one assumes $\sigma_{F_{\alpha}^2} = 1.00$.

Interestingly these refinements gave essentially the same oxygen and chlorine parameters as countingerror weighting but slightly different R factors:

Unit-wt. on F_o :	
$x_{\rm C1} = 0.2409 \pm 0.0006$	R = 0.0559
$z_0 = 0.1982 + 0.0027$	Wtd. $R = 0.0448$

Unit-wt. on F_{o^2} :	
$x_{\rm C1} = 0.2406 \pm 0.0005$	R = 0.0600
$z_0 = 0.1975 \pm 0.0019$	Wtd. $R = 0.0347$.

However, the unit weighting of the F_{o^2} or F_{o} is not considered the best approach because the standard deviations of I_0 must in reality vary over the range of magnitudes measured and the weighting scheme can seriously affect final results.

Oxygen contribution

Though the least-squares refinement had settled upon $z_0=0.1999$, it was not known how great an effect would be created by moving the oxygen atom and holding it fixed on either side of the minimum. This calculation was carried out starting with oxygen at 0.1908 and moving it by increments of 0.0023 to 0.2046. Aside from the fixed change imposed on oxygen the only variables which showed small changes were standard deviation of oxygen parameter, oxygen temperature factors, R, wtd. R and ESD of unit-wt. observation. There is presented in Fig. 2 a plot of the value of R and of wtd. R versus oxygen position. The minimum in wtd. R occurs at 1.745 Å from the origin while the minimum in R is lower, around 1.730 Å.

Fig. 2. Plot of variation in R and Wtd. R as the oxygen position is varied relative to the osmium atom.

$$\circ = R$$
 plot. $\diamond = Wtd. R$ plot.

In another cycle of refinement the oxygen contribution was held to zero to see if the absence of oxygen would have any effect on the other variables. Small changes did occur in x_{C1} as well as in the temperature factors. The *R* and wtd. *R* shifted upward to

$$R = 0.0837$$
, wtd. $R = 0.0986$

Discussion

The general features of the $K_2OsO_2Cl_4$ structure were well described by Hoard & Grenko (1934). In Fig. 3 is seen the osmyl tetrachloride ion in which is apparent the four-fold O-Os-O axis. At the time of H.&G.'s work, McCullough's (1936) report on K₂OsCl₆ had not appeared and the closest related structure was K₂PtCl₆. Both K₂OsCl₆ and K₂PtCl₆ have face-centered cubic CsF₂ type structures. H.&G. showed that K₂OsO₂Cl₄ could be considered as face-centered tetragonal with cell dimensions of $a_0 = 9.90$ and $c_0 = 8.75$ Å. This compares favorably with the cubic cell of 9.75 Å for the two hexachlorides.

Fig. 3. The $OsO_2Cl_4^{--}$ complex ion. Bond lengths indicated are in Å.

Hepworth & Robinson (1957) have prepared and crystallographically examined Cs₂RuO₂Cl₄, Cs₂RuCl₆, Cs₂OsO₂Cl₄ and Cs₂OsCl₆. They find the cesium ruthenyl and osmyl chlorides to be cubic with $a_0 =$ 10.07 Å and the hexachlorides also cubic with $a_0 =$ 10.22 Å. They suggested that in the cesium compounds the oxygens of the linear O–Os–O group randomly occupy the three axial positions in the nearly octahedral OsO₂Cl₄-- ion in contrast to the specific fourfold axis orientation in the potassium compound.

A packing diagram of the larger face-centered cell is included in H.&G.'s paper and there is a packing diagram of the body-centered tetragonal cell in Fig.4. The pertinent interatomic distances in the refined structure are given in Table 4.

The potassium ion is coordinated to eight chlorines equidistant at 3.30 Å. There is weak K+-O interaction over a distance of 3.55 Å. The only reported osmium-

Fig. 4. Packing diagram of the $K_2OsO_2Cl_4$ structure. Black spheres are K⁺, dotted spheres are O and flecked spheres are Cl atoms.

oxygen bond length is 1.66 Å in OsO4 with a different type of bonding than in K₂OsO₂Cl₄. Pauling's (1960) covalent radii lead to an Os-O bond distance in the range 1.95 to 2.07 Å, larger than the 1.750 Å found here. From K₂OsCl₆ a value of 2.36 Å was obtained for the Os-Cl bond and Pauling (1960) predicts 2.10 to 2.32 Å. The value of 2.379 Å for Os-Cl in K2OsO2Cl4 indicates a weaker binding which correlates with a stronger Os-O bond.

Table 4. Pertinent interatomic distances

Å

A. Interatomic distances within the complex ion

	-
Os-O	1.750 ± 0.022
Os-Cl	$2 \cdot 379 \pm 0 \cdot 005$
O-Cl	$2 \cdot 950 \pm 0 \cdot 022$
Cl-Cl	3.365 ± 0.006

B. Intermolecular contact distances

K+–O	3.524 ± 0.022 Å
K+–Cl	3.303 ± 0.005
$0_{1} - 0_{2}$	3.489 ± 0.025 (1)
O–Cl,	3.675 ± 0.022
Cl ₁ –Čl ₂	3.628 ± 0.006 (2)

(1) To oxygen in nearest neighbor $OsO_{2}Cl_{4}^{--}$ ion at bodycentered position.

(2) Nearest neighbors in xx plane.

In a recent paper on the compound, K₂OsO₂(OH)₄, Symons & Lott (1960) discuss the probable structure of this material from crystal field and magnetochemical considerations and conclude that the Os-O bonds should be stronger and shorter than Os-OH (or, also, Os-Cl) bonds. We now have a measurement of the Os-O bond in which case the ligand is Cl. Analysis of the structure of K₂OsO₂(OH)₄ is currently being carried out in this laboratory. It will be interesting to have data from other osmyl compounds in order to

establish a correlation between bond length and bond strength similar to the work done by Zachariasen (1954).

The author would like to gratefully acknowledge the kind help provided by D. T. Cromer, A. C. Larson and R. B. Roof of this laboratory, plus the cooperation of Jack Mann and the T-1 Computer Group.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- EVANS, H. R. & EKSTEIN, M. G. (1952). Acta Cryst. 5, 540.
- EVANS, H. T. (1953). Rev. Sci. Instrum. 24, 156.

FREEMAN, A. J. (1959). Acta Cryst. 12, 261.

- FRIEDLANDER, G. & KENNEDY, J. W. (1955). Nuclear and Radiochemistry. New York: Wiley.
- HEPWORTH, M. A. & ROBINSON, P. L. (1957). Inorg. Nucl. Chem. 4, 24.
- HOARD, J. L. & GRENKO, J. D. (1934). Z. Kristallogr. 87, 100.
- JONES, L. H. (1958). Spectrochim. Acta, 10, 395.
- JONES, L. H. (1959). Spectrochim. Acta, 1959, 409.
- LARSON, A. C. (1960). Private communication.
- McCullough, J. D. (1936). Z. Kristallogr. A, 94, 143.
- PAULING, LINUS (1960). The Nature of the Chemical Bond.
- New York: Cornell Univ. Press. SYMONS, M. C. R. & LOTT, K. A. K. (1960). J. Chem. Soc.
- 1960, 973. THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WINTREBERT, L. (1903). Ann. Chim. Phys. vii, 28, 44.
- ZACHARIASEN, W. H. (1954). Acta Cryst. 7, 795.
- ZACHARIASEN, W. H. & PLETTINCER, H. A. (1959). Acta Cryst. 12, 526.

Acta Cryst. (1961). 14, 1041

Die Kristallstruktur des Kupferhydroxids, Cu(OH)₂

VON H. JAGGI UND H. R. OSWALD

Institut für anorganische, analytische und physikalische Chemie der Universität Bern, Schweiz

(Eingegangen am 6. August 1960 und in überarbeiteter Form am 23. Januar 1961)

The crystal structure of copper hydroxide Cu(OH)₂ has been determined by powder methods (Guinier films and counter goniometer measurements). The unit-cell dimensions are

$$a = 2.949, b = 10.59, c = 5.256$$
 Å;

space group $Cmcm(D_{2h}^{17})$. The structure is related to that of γ -FeOOH (lepidocrocite), EO_4 type. Chains of distorted octahedra form corrugated layers. The copper and each of the two oxygens of the formula occupy crystallographic positions of the same type, 4(c), with different values of the parameters.

In einer kurzen Mitteilung (Oswald & Jaggi, 1960) haben wir über die Elementarzelle des Kupferhydroxids berichtet, die nach der Methode de Wolff (1957) aus Guinier-Diagrammen ermittelt wurde. In der Zwischenzeit ist es uns gelungen, aus Aufnahmen mit dem Zählrohr-Goniometer die Struktur zu ermitteln.

A C 14 - 67